Bounds for the normalized Jensen-Mercer functional

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds for the Normalized Jensen – Mercer Functional

We introduce the normalized Jensen-Mercer functional Mn( f ,x, p) = f (a)+ f (b)− n ∑ i=1 pi f (xi)− f ( a+b− n ∑ i=1 pixi ) and establish the inequalities of type MMn( f ,x,q) Mn( f ,x, p) mMn( f ,x,q) , where f is a convex function, x = (x1, . . . ,xn) and m and M are real numbers satisfying certain conditions. We prove them for the case when p and q are nonnegative n -tuples and when p and q...

متن کامل

Bounds for the Normalised Jensen Functional

New inequalities for the general case of convex functions defined on linear spaces which improve the famous Jensen’s inequality are established. Particular instances in the case of normed spaces and for complex and real n-tuples are given. Refinements of Shannon’s inequality and the positivity of Kullback-Leibler divergence are obtained.

متن کامل

Normalized Jensen Functional, Superquadracity and Related Inequalities

In this paper we generalize the inequality MJn (f,x,q) ≥ Jn (f,x,p) ≥ mJn (f,x,q) where Jn (f,x,p) = n ∑ i=1 pif (xi)− f ( n ∑ i=1 pixi ) , obtained by S.S. Dragomir for convex functions. We provide cases where we can improve the bounds m and M for convex functions, and also, we show that for the class of superquadratic functions nonzero lower bounds of Jn (f,x,p)− mJn (f,x,q) and nonzero upper...

متن کامل

On a Variant of the Jensen–mercer Inequality for Operators

Some refinements of the Jensen-Mercer inequality for operators are presented. Obtained results are used to refine some comparision inequalities between power and quasiarithmetic means for operators. Mathematics subject classification (2000): 47A63, 47A64.

متن کامل

Refinements of the Lower Bounds of the Jensen Functional

and Applied Analysis 3 where Pj j ∑ i 1 pi, j 1, . . . , n. 1.7 Lemma 1.6. Let f be a convex function on I, p a positive n-tuple such that Pn ∑n i 1 pi 1 and x1, x2, . . . , xn ∈ I, n ≥ 3 such that x1 ≤ x2 ≤ · · · ≤ xn. For fixed x1, x2, . . . , xk, where k 2, 3, . . . , n− 1, the Jensen functional J x,p, f defined in 1.2 is minimal when xk xk 1 · · · xn−1 xn, that is, J ( x,p, f ) ≥ k−1 ∑ i 1 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Inequalities

سال: 2009

ISSN: 1846-579X

DOI: 10.7153/jmi-03-52